माना $\mathrm{f}:[2,4] \rightarrow \mathbb{R}$ एक अवकलनीय फलन है, जिसके लिए $\left(x \log _e x\right) f^{\prime}(x)+\left(\log _e x\right) f(x)+f(x) \geq 1$, $x \in[2,4], f(2)=\frac{1}{2}$ तथा $f(4)=\frac{1}{4}$ हैं।
निम्न दो कथनों का विचार कीजिए :
($A$) सभी $\mathrm{x} \in[2,4]$ के लिए $\mathrm{f}(\mathrm{x}) \leq 1$, है।
($B$) सभी $x \in[2,4]$ के लिए $f(x) \geq \frac{1}{8}$ है। तो
केवल कथन $(\mathrm{B})$ सत्य है
न तो कथन $(\mathrm{A})$ न ही कथन $(\mathrm{B})$ सत्य है
($A$) तथा ($B$) दोनों कथन सत्य हैं
केवल कथन $(\mathrm{A})$ सत्य है
माना कि $f, g:[-1,2] \rightarrow R$ संतत फलन है जो की अंतराल $(-1,2)$ में दो बार अवकलनीय (twice differentiable) है। माना कि $f$ और $g$ के मान, बिन्दुओं $-1,0$ और $2$ पर निम्न सारणी में दर्शाए गए है -
$x=-1$ | $x=0$ | $x=2$ | |
$f(x)$ | $3$ | $6$ | $0$ |
$g(x)$ | $0$ | $1$ | $-1$ |
यदि प्रत्येक अंतराल $(-1,0)$ और $(0,2)$ में फलन $( f -3 g )$ " कभी भी शून्य का मान नही लेता है, तव सही कथन है (हैं)
$(A)$ $(-1,0) \cup(0,2)$ में, $f^{\prime}(x)-3 g^{\prime}(x)=0$ के तीन ही हल (exactly three solutions) हैं
$(B)$ $(-1,0)$ में, $f ^{\prime}( x )-3 g ^{\prime}( x )=0$ के एक ही हल (exactly one solutions) है
$(C)$ $(0,2)$ में, $f^{\prime}(x)-3 g^{\prime}(x)=0$ के एक ही हल (exactly one solution ) है
$(D)$ $f ^{\prime}( x )-3 g ^{\prime}( x )=0$ को $(-1,0)$ में दो ही हल (exactly two solutions) है और $(0,2)$ में दो ही हल है
संतत फलनों (Continuous functions) के प्रत्येक युग्म (pair) $f , g :[0,1] \rightarrow R$ जिनके लिये अधिकतम $\{ f ( x ): x \in[0,1]\}$ = अधिकतम $\{ g ( x ): x \in[0,1]\}$ है, के लिये सत्य कथन है(हैं)
$(A)$ किसी $c \in[0,1]$ के लिये $(f(c))^2+3 f(c)=(g(c))^2+3 g(c)$
$(B)$ किसी $c \in[0,1]$ के लिये $(f(c))^2+f(c)=(g(c))^2+3 g(c)$
$(C)$ किसी $c \in[0,1]$ के लिये $(f(c))^2+3 f(c)=(g(c))^2+g(c)$
$(D)$ किसी $c \in[0,1]$ के लिये $(f(c))^2=(g(c))^2$
अन्तराल $\left( {0,\frac{\pi }{2}} \right)$ में फलन $f(x) = {e^{ - 2x}}$ $sin 2x $है। रोले प्रमेय के अनुसार एक वास्तविक संख्या $c \in \left( {0,\frac{\pi }{2}} \right)$ इस प्रकार है कि $f'\,(c) = 0$, तब
यदि $c$ एक बिंदु है जिस पर, अंतराल $[3,4]$ में, फलन $f( x )=\log _{ e }\left(\frac{ x ^{2}+\alpha}{7 x }\right)$ पर रोले प्रमेय लागू होता है, जहाँ $\alpha$ $\in R$ है, तो $f^{\prime \prime}( c )$ बराबर है
इस प्रश्न में $[x]$ वह अधिकतम पूर्णांक है जो दी गयी वास्तविक संख्या $x$ से कम या बराबर है। दिये गए फलन $f(x)=[x] \sin \pi x$ पर विचार करें। निम्नलिखित में से कौन सा कथन उचित है: