4-1.Complex numbers
normal

माना $\mathrm{S}=\left\{\mathrm{z} \in \mathrm{C}-\{\mathrm{i}, 2 \mathrm{i}\}: \frac{\mathrm{z}^2+8 \mathrm{iz}-15}{\mathrm{z}^2-3 \mathrm{iz}-2} \in \mathrm{R}\right\}$ है। यदि $\alpha-\frac{13}{11} \mathrm{i} \in \mathrm{S}, \alpha \in \mathbb{R}-\{0\}$ है, तो $242 \alpha^2$ बराबर है।

A

$1680$

B

$1681$

C

$1682$

D

$1683$

(JEE MAIN-2023)

Solution

$\left(\frac{z^2+81 z-15}{z^2-3 i z-2}\right) \in R$

$\Rightarrow 1+\frac{(11 i z-13)}{\left(z^2-3 i z-2\right)} \in R$

Put $z=\alpha-\frac{13}{11} i$

$\Rightarrow\left(z^2-3 i z-2\right)$ is imaginary

Put $z=x+i y$

$\Rightarrow\left(x^2-y^2+2 x y i-3 i x+3 y-2\right) \in \text { Imaginary }$

$\Rightarrow \operatorname{Re}\left(x^2-y^2+3 y-2+(2 x y-3 x) i\right)=0$

$\Rightarrow x^2-y^2+3 y-2=0$

$x^2=y^2-3 y+2$

$x^2=y^2-3 y+2$

$x^2=(y-1)(y-2) \therefore z=\alpha-\frac{13}{11} i$

Put $x=\alpha, y=\frac{-13}{11}$

$\alpha^2=\left(\frac{-13}{11}-1\right)\left(\frac{-13}{11}-2\right)$

$\alpha^2=\frac{(24 \times 35)}{121}$

$242 \alpha^2=48 \times 35=1680$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.