Let $X = \{ 1,\,2,\,3,\,4,\,5\} $ and $Y = \{ 1,\,3,\,5,\,7,\,9\} $. Which of the following is/are relations from $X$ to $Y$
${R_1} = \{ (x,\,y)|y = 2 + x,\,x \in X,\,y \in Y\} $
${R_2} = \{ (1,\,1),\,(2,\,1),\,(3,\,3),\,(4,\,3),\,(5,\,5)\} $
${R_3} = \{ (1,\,1),\,(1,\,3)(3,\,5),\,(3,\,7),\,(5,\,7)\} $
both (B) and (C)
Determine the domain and range of the relation $R$ defined by $R =\{(x, x+5): x \in\{0,1,2,3,4,5\}\}$
Write the relation $R = \{ \left( {x,{x^3}} \right):x$ is a prime number less than $10{\rm{\} }}$ in roster form.
The Fig shows a relation between the sets $P$ and $Q$. Write this relation
in set - bulider form,
What is its domain and range ?
Let $A=\{1,2,3,4,5,6\} .$ Define a relation $R$ from $A$ to $A$ by $R=\{(x, y): y=x+1\}$
Depict this relation using an arrow diagram.
Let $R$ be a relation from $N$ to $N$ defined by $R =\left\{(a, b): a, b \in N \text { and } a=b^{2}\right\} .$ Are the following true?
$(a, a) \in R ,$ for all $a \in N$