Let $R$ be a relation from $N$ to $N$ defined by $R =\left\{(a, b): a, b \in N \text { and } a=b^{2}\right\} .$ Are the following true?

$(a, b) \in R,$ implies $(b, a) \in R$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$R=\left\{(a, b): a, b \in N \text { and } a=b^{2}\right\}$

It can be seen that $(9,3)$ $\in N$ because $9,3 \in N$ and $9=3^{2} .$ Now, $3 \neq 9^{2}=81$ $(3,9)$ $\notin N$

Therefore, the statement $"(a, b) \in R,$ implies $"(b, a) \in R "$ is not true.

Similar Questions

$A=\{1,2,3,5\}$ and $B=\{4,6,9\} .$ Define a relation $R$ from $A$ to $B$ by $R = \{ (x,y):$ the difference between $ x $ and $ y $ is odd; ${\rm{; }}x \in A,y \in B\} $ Write $R$ in roster form.

Let $S=\{1,2,3,4,5,6\}$ and $X$ be the set of all relations $R$ from $S$ to $S$ that satisfy both the following properties:

$i$. $R$ has exactly $6$ elements.

$ii$. For each $(a, b) \in R$, we have $|a-b| \geq 2$.

Let $Y=\{R \in X$ : The range of $R$ has exactly one element $\}$ and $Z=\{R \in X: R$ is a function from $S$ to $S\}$.

Let $n(A)$ denote the number of elements in a Set $A$.

(There are two questions based on $PARAGRAPH " 1 "$, the question given below is one of them)

($1$) If $n(X)={ }^m C_6$, then the value of $m$ is. . . . 

($2$) If the value of $n(Y)+n(Z)$ is $k^2$, then $|k|$ is. . . . 

Give the answer or quetion ($1$) and ($2$)

  • [IIT 2024]

The Fig shows a relationship between the sets $P$ and $Q .$ Write this relation

roster form

What is its domain and range?

Let $R$ be a relation from $Q$ to $Q$ defined by $R=\{(a, b): a, b \in Q$ and $a-b \in Z \} .$ Show that

$(a, b) \in R$ and $(b, c) \in R$ implies that $(a, c) \in R$

Given two finite sets $A$ and $B$ such that $n(A) = 2, n(B) = 3$. Then total number of relations from $A$ to $B$ is