જો $X = \{ 1,\,2,\,3,\,4,\,5\} $ અને $Y = \{ 1,\,3,\,5,\,7,\,9\} $ તો નીચેના પૈકી . . . એ $X$ થી $Y$ પરનો સંબંધ ર્દશાવે.
${R_1} = \{ (x,\,y)|y = 2 + x,\,x \in X,\,y \in Y\} $
${R_2} = \{ (1,\,1),\,(2,\,1),\,(3,\,3),\,(4,\,3),\,(5,\,5)\} $
${R_3} = \{ (1,\,1),\,(1,\,3)(3,\,5),\,(3,\,7),\,(5,\,7)\} $
(B) અને (C) બંને
$R=\{(x, y): y=x+5,$ $x$ એ $4$ થી નાની પ્રાકૃતિક સંખ્યા છે, $x, y \in N \}$ થાય તે રીતે એક સંબંધ $N$ પર વ્યાખ્યાયિત છે. $R$ ને યાદીની રીતે લખો. $R$ નો પ્રદેશ તેમજ વિસ્તાર મેળવો.
જો $A = \{1, 2, 3\}$ તો $A$ પરના ભિન્ન સંબંધની સંખ્યા મેળવો.
$R$ એ $N$ થી $N$ નો સંબંધ છે. $R = \{ (a,b):a,b \in N$ અને $a = {b^2}\} $ થાય તે રીતે વ્યાખ્યાયિત છે, તો શું નીચેનાં વિધાનો સત્ય છે? જો $(a, b) \in R ,(b, c) \in R$ તો $(a, c) \in R$ પ્રત્યેક વિધાનમાં તમારા જવાબની સત્યાર્થતા ચકાસો.
જો $A=\{x, y, z\}$ અને $B=\{1,2\}$ તો $A$ થી $B$ ના સંબંધોની સંખ્યા શોધો.
જો $R$ એ $Q$ થી $Q$ પરનો $R=\{(a, b): a, b \in Q$ અને $a-b \in Z \}$ થાય તે રીતે વ્યાખ્યાયિત સંબંધ છે. તો બતાવો કે, પ્રત્યેક $a \in Q$ માટે, $(a, a) \in R$