Let $R$ be an equivalence relation on a finite set $A$ having $n$ elements. Then the number of ordered pairs in $R$ is
Less than $n$
Greater than or equal to $n$
Less than or equal to $n$
None of these
Show that each of the relation $R$ in the set $A=\{x \in Z: 0 \leq x \leq 12\},$ given by $R =\{( a , b ): a = b \}$ is an equivalence relation. Find the set of all elements related to $1$ in each case.
The void relation on a set $A$ is
Show that the relation $R$ in the set $\{1,2,3\}$ given by $R =\{(1,1),\,(2,2),$ $(3,3)$, $(1,2)$, $(2,3)\}$ is reflexive but neither symmetric nor transitive.
Let $\mathrm{T}$ be the set of all triangles in a plane with $\mathrm{R}$ a relation in $\mathrm{T}$ given by $\mathrm{R} =\left\{\left( \mathrm{T} _{1}, \mathrm{T} _{2}\right): \mathrm{T} _{1}\right.$ is congruent to $\left. \mathrm{T} _{2}\right\}$ . Show that $\mathrm{R}$ is an equivalence relation.
Check whether the relation $R$ in $R$ defined by $S =\left\{(a, b): a \leq b^{3}\right\}$ is reflexive, symmetric or transitive.