જો $R$ એ $n$ સભ્ય ધરાવતા ગણ $A$ પરનો સામ્ય સંબંધ હોય તો $R$ માં રહેલી કુલ ક્રમયુકત જોડની સંખ્યા . .. . . થાય.
$n$ કરતાં ઓછી
$n$ અથવા $n$ કરતાં વધુ
$n$ અથવા $n$ કરતાં ઓછી
એકપણ નહીં
જો $P$ એ વાસ્તવિક સંખ્યા પરનો સંબંધ છે કે જેથી $P = \left\{ {\left( {a,b} \right):{{\sec }^2}\,a - {{\tan }^2}\,b = 1\,} \right\}$. હોય તો $P$ એ . . . .
જો $A=\{1,2,3, \ldots . . . .100\}$. જો $R$ એ સંબંધ $A$ પર છે. તથા $(x, y) \in R$ થી વ્યાખાયિત છે, જો અને તો જ $2 x=3 y$. જો $R_1$ એ $A$ પર સંમિત સંબંધ હોય તો $R \subset$ $R_1$ અને $R_1$ ના ઘટકોની સંખ્યા $n$ છે. તો $n$ ની ન્યુનત્તમ કિંમત મેળવો.
$(1,2)$ અને $(2,3)$ ને સમાવતા, સ્વવાચક અને પરંપરિત હોય પણ સંમિત ન હોય, તેવા ગણ $\{1,2,3\}$ પરના સંબંધી ની સંખ્યા $.......$ છે.
ધારોકે ગણ $X=\{1,2,3, \ldots ., 20\}$ પરનાં સંબંધો $R_1$ અને $R_2$ એ $R_1=\{(x, y): 2 x-3 y=2\}$ અને $R_2=\{(x, y):-5 x+4 y=0\}$ પ્રમાણે આપેલા છે. સંબંધો ને સંમિત બનાવવા માટે $R_1$ અને $R_2$ માં ઉમેરવા પડતા ધટકો ની ન્યૂનતમ સંખ્યા અનુક્રમે જો $M$ અને $N$ હોય, તો $M+N=$ ..............
ધારોકે $A =\{1,3,4,6,9\}$ અને $B =\{2,4,5,8,10\}$.ધારોકે $R$ એ $A \times B$ પરનો એવો વ્યાખ્યાયિત સંબંધ છે કે જેથી $R =\left\{\left(\left(a_1, b _1\right),\left( a _2, b _2\right)\right): a _1 \leq b _2\right.$ અને $\left.b _1 \leq a _2\right\}$.તો ગુણ $R$ ના ધટકો ની સંખ્યા $.......$ છે.