Let $X$ be a family of sets and $R$ be a relation on $X$ defined by $‘A$ is disjoint from $B’$. Then $R$ is

  • A

    Reflexive

  • B

    Symmetric

  • C

    Anti-symmetric

  • D

    Transitive

Similar Questions

Let $A$ be the non-void set of the children in a family. The relation $'x$ is a brother of $y'$ on $A$ is

Let $\mathrm{A}=\{1,2,3,4,5\}$. Let $\mathrm{R}$ be a relation on $\mathrm{A}$ defined by $x R y$ if and only if $4 x \leq 5 y$. Let $m$ be the number of elements in $\mathrm{R}$ and $\mathrm{n}$ be the minimum number of elements from $\mathrm{A} \times \mathrm{A}$ that are required to be added to $\mathrm{R}$ to make it a symmetric relation. Then $m+n$ is equal to:

  • [JEE MAIN 2024]

Let $A = \{1, 2, 3\}, B = \{1, 3, 5\}$. $A$ relation $R:A \to B$ is defined by $R = \{(1, 3), (1, 5), (2, 1)\}$. Then ${R^{ - 1}}$ is defined by

Determine whether each of the following relations are reflexive, symmetric and transitive:

Relation $\mathrm{R}$ in the set $\mathrm{A}$ of human beings in a town at a particular time given by

$ \mathrm{R} =\{(\mathrm{x}, \mathrm{y}): \mathrm{x}$ and $ \mathrm{y}$ work at the same place $\}$

Let $R = \{(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)\}$ be a relation on the set $A = \{1, 2, 3, 4\}$. The relation $R$ is

  • [AIEEE 2004]