જો $X$  એ ગણોનો સમુહ છે અને $R$ એ $X$  પરનો સંબંધ છે કે જે ‘$A$ અને $B$ અલગ ગણ છે.’ દ્વારા વ્યાખ્યાયિત હોય તો $R$ એ . . 

  • A

    સ્વવાચક

  • B

    સંમિત

  • C

    વિસંમિત

  • D

    પરંપરિત

Similar Questions

સંબંધ $R$ એ ગણ $N$ પર $R =\{(a,\, b)\,:\, a=b-2,\, b>6\} $  દ્વારા આપેલ છે.

જો $A = \{1, 2, 3, 4\}$ અને $R$ એ $A$ પરનો સંબંધ છે કે જેથી $R = \{(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1), (3, 1), (1, 3)\}$.તો $R$ એ . .  .

ગણ $A\, = \,\{ x\,:\,\left| x \right|\, < \,3,\,x\, \in Z\} $ કે જ્યાં $Z$ એ પૃણાંક સંખ્યા નો ગણ છે ,તેના પરનો સંબંધ $R= \{(x, y) : y = \left| x \right|, x \ne  - 1\}$ આપેલ હોય તો $R$ ના ઘાતગણમાં રહેલ સભ્ય સંખ્યા મેળવો.

  • [JEE MAIN 2014]

$X$ એ આપેલ અરિક્ત ગણ છે. $X$ ના તમામ ઉપગણોના ગણ $P(X)$ નો વિચાર કરો. $P(X)$ માં સંબંધ $R$ આ પ્રમાણે વ્યાખ્યાયિત છે :

$P(X)$ ના ઉપગણો $A$ અને $B$ માટે, $A \subset B$ તો અને તો જ $ARB$.

$R$, $P(X)$ પર સામ્ય સંબંધ છે ? તમારા જવાબનું સમર્થન કરો. 

સાબિત કરો કે વાસ્તવિક સંખ્યાઓના ગણ $R$ પર $R =\left\{(a, b): a \leq b^{2}\right\}$ વડે વ્યાખ્યાયિત સંબંધ $S$. સ્વવાચક, સંમિત અને પરંપરિત સંબંધ પૈકી એક પણ નથી.