Let $\mathrm{A}=\{1,2,3,4\}$ and $\mathrm{R}=\{(1,2),(2,3),(1,4)\}$ be a relation on $\mathrm{A}$. Let $\mathrm{S}$ be the equivalence relation on $A$ such that $\mathrm{R} \subset \mathrm{S}$ and the number of elements in $\mathrm{S}$ is $\mathrm{n}$. Then, the minimum value of $\mathrm{n}$ is...............
$16$
$15$
$14$
$13$
Which of the following is not correct for relation $\mathrm{R}$ on the set of real numbers ?
Let $A=\{-4,-3,-2,0,1,3,4\}$ and $R =\{( a , b ) \in A$ $\times A : b =| a |$ or $\left.b ^2= a +1\right\}$ be a relation on $A$. Then the minimum number of elements, that must be added to the relation $R$ so that it becomes reflexive and symmetric, is $........$.
Consider the following two binary relations on the set $A= \{a, b, c\}$ : $R_1 = \{(c, a) (b, b) , (a, c), (c,c), (b, c), (a, a)\}$ and $R_2 = \{(a, b), (b, a), (c, c), (c,a), (a, a), (b, b), (a, c)\}.$ Then
Give an example of a relation. Which is Reflexive and transitive but not symmetric.
Determine whether each of the following relations are reflexive, symmetric and transitive:
Relation $R$ in the set $A$ of human beings in a town at a particular time given by
$R =\{(x, y): x$ is exactly $7\,cm $ taller than $y\}$