Let $A$ be the non-void set of the children in a family. The relation $'x$ is a brother of $y'$ on $A$ is
Reflexive
Symmetric
Equivalency relation
None of these
Let $P ( S )$ denote the power set of $S =\{1,2,3, \ldots, 10\}$. Define the relations $R_1$ and $R_2$ on $P(S)$ as $A R_1 B$ if $\left( A \cap B ^{ c }\right) \cup\left( B \cap A ^{ c }\right)=\varnothing$ and $AR _2 B$ if $A \cup B ^{ c }=$ $B \cup A ^{ c }, \forall A , B \in P ( S )$. Then :
Let $R$ be a relation on a set $A$ such that $R = {R^{ - 1}}$, then $R$ is
Let $R$ be a relation on the set $A$ of ordered pairs of positive integers defined by $(x, y) R (u, v)$ if and only if $x v=y u .$ Show that $R$ is an equivalence relation.
Let $N$ be the set of natural numbers greater than $100. $ Define the relation $R$ by : $R = \{(x,y) \in \,N × N :$ the numbers $x$ and $y$ have atleast two common divisors$\}.$ Then $R$ is-
The relation $R$ defined in $N$ as $aRb \Leftrightarrow b$ is divisible by $a$ is