જો $A$ એ પરિવારના બાળકોનો અરિકત ગણ છે.જો $A$ પરનો સંબંધએ ‘$x$ એ $y$ નો ભાઇ છે ‘તો સંબંધ . . . .
સ્વવાચક
સંમિત
સામ્ય સંબંધ
એકપણ નહીં.
ધારો કે $\mathbb{N} \times \mathbb{N}$ પર એક સંબંધ $\mathrm{R}$ એ "( $\left.x_1, y_1\right) \mathrm{R}\left(x_2, y_2\right)$ તો અને તો જ $x_1 \leq x_2$ અથવા $y_1 \leq y_2$ " પ્રમાણે વ્યાખ્યાયિત કરેલ છે.
બે વિધાનો ધ્યાને લો:
($I$) $\mathrm{R}$ સ્વવાચક છે પરંતુ સંમિત નથી .
($II$) $R$ પરંપરિત છે
તો નીચેના પૈકી કયુ એક સાયું છે
જે સ્વવાચક અને સંમિત હોય પરંતુ પરંપરિત ના હોય તેવા એક સંબંધનું ઉદાહરણ આપો
ગણ $\{1,2,3,4\}$ પરના સ્વવાચક ન હોય તેવા સંમિત સંબંધોની સંખ્યા ........................છે.
સાબિત કરો કે સમતલમાં આવેલાં બિંદુઓના ગણ $\mathrm{A}$ પર વ્યાખ્યાયિત સંબંધ $\mathrm{R} =\{( \mathrm{P} ,\, \mathrm{Q} ):$ ઊગમબિંદુથી બિંદુ $\mathrm{P}$ નું અંતર એ ઊગમબિંદુથી બિંદુ $\mathrm{Q}$ ના અંતર જેટલું જ છે; હોય, તો $\mathrm{R}$ એ સામ્ય સંબંધ છે. સાબિત કરો કે ઊગમબિંદુ સિવાયના બિંદુ ને સાથે સંબંધ $\mathrm{R}$ ધરાવતા બધાં જ બિંદુઓનો ગણ એ $\mathrm{P}$ માંથી પસાર થતું અને ઊગમબિંદુ કેન્દ્રવાળું વર્તુળ છે.
ધારો કે $P ( S )$ એ $S =\{1,2,3, \ldots ., 10\}$ નો ઘાતગણ દર્શાવે છે.$P ( S )$ પર સંબંધો $R_1$ અને $R_2$ નીચે પ્રમાણે વ્યાખ્યાયિત કરો.$A R_1 B$ જો $\left( A \cap B ^{ c }\right) \cup\left( B \cap A ^{ c }\right)=\varnothing$ અને $A R_2 B$ જો $A \cup B ^{ c }=$ $B \cup A ^{ c }, \forall A , B \in P ( S )$.તો: