Let $R$ be a relation over the set $N × N$ and it is defined by $(a,\,b)R(c,\,d) \Rightarrow a + d = b + c.$ Then $R$ is
Reflexive only
Symmetric only
Transitive only
An equivalence relation
The minimum number of elements that must be added to the relation $R =\{( a , b ),( b , c )\}$ on the set $\{a, b, c\}$ so that it becomes symmetric and transitive is:
If $A = \{1, 2, 3\}$ , $B = \{1, 4, 6, 9\}$ and $R$ is a relation from $A$ to $B$ defined by ‘$x$ is greater than $y$’. The range of $R$ is
Let $R$ be a relation on $N$ defined by $x + 2y = 8$. The domain of $R$ is
If $A = \left\{ {x \in {z^ + }\,:x < 10} \right.$& and $x$ is a multiple of $3$ or $4\}$, where $z^+$ is the set of positive integers, then the total number of symmetric relations on $A$ is
The relation "is subset of" on the power set $P(A)$ of a set $A$ is