Let $n$ be a fixed positive integer. Define a relation $R$ on the set $Z$ of integers by, $aRb \Leftrightarrow n|a - b$|. Then $R$ is
Reflexive
Symmetric
Transitive
All of the above
If $R$ is a relation from a finite set $A$ having $m$ elements to a finite set $B$ having $n$ elements, then the number of relations from $A$ to $B$ is
Let $R$ be a relation on the set $N$ of natural numbers defined by $nRm $$\Leftrightarrow$ $n$ is a factor of $m$ (i.e.,$ n|m$). Then $R$ is
Let $R =\{( P , Q ) \mid P$ and $Q$ are at the same distance from the origin $\}$ be a relation, then the equivalence class of $(1,-1)$ is the set
Let $R\,= \{(x,y) : x,y \in N\, and\, x^2 -4xy +3y^2\, =0\}$, where $N$ is the set of all natural numbers. Then the relation $R$ is
Let $A = \{1, 2, 3, 4\}$ and let $R= \{(2, 2), (3, 3), (4, 4), (1, 2)\}$ be a relation on $A$. Then $R$ is