જો $S$ એ વાસ્તવિક સંખ્યા ગણ હોય તો ગણ $S$ પરનો સંબંધ $R = \{(a, b) : 1 + ab > 0\}$ એ . . . ..
સ્વવાચક અને સંમિત છે પરંતુ પરંપરિત નથી.
સ્વવાચક અને પરંપરિત છે પરંતુ સંમિત નથી.
સંમિત અને પરંપરિત છે પરંતુ સ્વવાચક નથી.
સામ્ય સંબંધ
જો $R\,= \{(x,y) : x,y \in N\, and\, x^2 -4xy +3y^2\, =0\}$, કે જ્યાં $N$ એ પ્રાકૃતિક સંખ્યાનો ગણ હોય તો $R$ એ .. .
ધારોકે $R_{1}$ અને $R_{2}$ એ ગણ $\{1,2, \ldots ., 50\}$ થી તે જ ગણ પરના એવા સંબંધો છે, જ્યાં $R_{1}=\left\{\left(p, p^{n}\right): p\right.$ અવિભાજ્ય છે અને $n \geq 0$ પૂણાંક છે $\}$ અને
$R_{2}=\left\{\left(p, p^{n}\right): p\right.$ અવિભાજ્ય છે અને $n=0$ અથવા $1\}$. તો, $R_{1}-R_{2}$ માં ધટકોની સંખ્યા..............છે
$\alpha \in N$ માટે $R =\{(x, y): 3 x+\alpha y$ એ $7$ નો ગુણિત છે. $\}$ દ્વારા આપેલ $N$ પરનો સંબંધ $R$ ધ્યાને લો. આ સંબંધ $R$ એ સામ્ય સંબંધ હોય, તો અને તો જ :
જો $A = \left\{ {x \in {z^ + }\,:x < 10} \right.$ અને $x$ એ $3$ અથવા $4$ નો ગુણક હોય $\}$, જ્યાં $z^+$ એ ધન પૂર્ણાક નો ગણ હોય તો $A$ પર ના સંમિત સબંધો નો સંખ્યા મેળવો.
ગણ $\{1,2,3,4\}$ પરના સ્વવાચક ન હોય તેવા સંમિત સંબંધોની સંખ્યા ........................છે.