- Home
- Standard 12
- Mathematics
1.Relation and Function
hard
Let $S$ be the set of all real numbers. Then the relation $R = \{(a, b) : 1 + ab > 0\}$ on $S$ is
A
Reflexive and symmetric but not transitive
B
Reflexive and transitive but not symmetric
C
Symmetric, transitive but not reflexive
D
Reflexive, transitive and symmetric
Solution
(a) Since $1 + a.a = 1 + {a^2} > 0\,,\forall a \in S$, $(a,\,a) \in R$
$R$ is reflexive.
Also$(a,b) \in R$ ==> $1 + ab > 0$ ==> $1 + ba > 0$ ==> $(b,\,a) \in R$,
$R$ is symmetric.
and $(b,\,c) \in R$ need not imply $(a,\,c) \in R$. Hence, $R$ is not transitive.
Standard 12
Mathematics