- Home
- Standard 12
- Mathematics
1.Relation and Function
easy
Let $R$ be a relation on the set $N$ be defined by $\{(x, y)| x, y \in N, 2x + y = 41\}$. Then $R$ is
A
Reflexive
B
Symmetric
C
Transitive
D
None of these
Solution
(d) On the set $N$ of natural numbers,
$R = \{ (x,y):x,y \in N,2x + y = 41\} $.
Since $(1,1) \notin R$ as $2.1 + 1 = 3 \ne 41$. So, $R$ is not reflexive.
$(1,\,39) \in R$ but $(39,\,1) \notin R$. So $R$ is not symmetric $(20, 1)$
$(1, 39 \in R$. But $(20,39) \notin R$, So $R$ is not transitive.
Standard 12
Mathematics