Let $R$ be a relation on the set $N$ be defined by $\{(x, y)| x, y \in N, 2x + y = 41\}$. Then $R$ is
Reflexive
Symmetric
Transitive
None of these
Let $R\,= \{(x,y) : x,y \in N\, and\, x^2 -4xy +3y^2\, =0\}$, where $N$ is the set of all natural numbers. Then the relation $R$ is
Let $A =\{1,2,3,4, \ldots .10\}$ and $B =\{0,1,2,3,4\}$ The number of elements in the relation $R =\{( a , b )$ $\left.\in A \times A : 2( a - b )^2+3( a - b ) \in B \right\}$ is $.........$.
Let $S$ be set of all real numbers ; then on set $S$ relation $R$ defined as $R = \{\ (a, b) : 1 + ab > 0\ \}$ is
For $\alpha \in N$, consider a relation $R$ on $N$ given by $R =\{( x , y ): 3 x +\alpha y$ is a multiple of 7$\}$.The relation $R$ is an equivalence relation if and only if.
Let $P ( S )$ denote the power set of $S =\{1,2,3, \ldots, 10\}$. Define the relations $R_1$ and $R_2$ on $P(S)$ as $A R_1 B$ if $\left( A \cap B ^{ c }\right) \cup\left( B \cap A ^{ c }\right)=\varnothing$ and $AR _2 B$ if $A \cup B ^{ c }=$ $B \cup A ^{ c }, \forall A , B \in P ( S )$. Then :