Show that the relation $\mathrm{R}$ in the set $\mathrm{Z}$ of integers given by $\mathrm{R} =\{(\mathrm{a}, \mathrm{b}): 2$ divides $\mathrm{a}-\mathrm{b}\}$ is an equivalence relation.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\mathrm{R}$ is reflexive, as $2$ divides $(\mathrm{a}-\mathrm{a})$ for all $\mathrm{a} \in \mathrm{Z}$. Further, if $(\mathrm{a}, \mathrm{b}) \in \mathrm{R} ,$ then $2$ divides $\mathrm{a}-\mathrm{b}$. Therefore, $2$ divides $\mathrm{b} - \mathrm{a}$. Hence, $(\mathrm{b}, \mathrm{a}) \in \mathrm{R}$, which shows that $\mathrm{R}$ is symmetric. Similarly, if $(\mathrm{a}, \mathrm{b}) \in \mathrm{R}$ and $(\mathrm{b}, \mathrm{c}) \in \mathrm{R} ,$ then $\mathrm{a}-\mathrm{b}$ and $\mathrm{b}-\mathrm{c}$ are divisible by $2$. Now, $\mathrm{a}-\mathrm{c}=(\mathrm{a}-\mathrm{b})+(\mathrm{b}-\mathrm{c})$ is even (Why?). So, $(\mathrm{a}-\mathrm{c})$ is divisible by $2 .$ This shows that $\mathrm{R}$ is transitive. Thus, $\mathrm{R}$ is an equivalence relation in $\mathrm{Z}$.

Similar Questions

Let $X =\{1,2,3,4,5,6,7,8,9\} .$ Let $R _{1}$ be a relation in $X$ given by $R _{1}=\{(x, y): x-y$ is divisible by $3\}$ and $R _{2}$ be another relation on $X$ given by ${R_2} = \{ (x,y):\{ x,y\}  \subset \{ 1,4,7\} \} $ or $\{x, y\} \subset\{2,5,8\} $ or $\{x, y\} \subset\{3,6,9\}\} .$ Show that $R _{1}= R _{2}$.

Let $A = \{1, 2, 3, 4\}$ and $R$ be a relation in $A$ given by $R = \{(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1), (3, 1), (1, 3)\}$. Then $R$ is

Show that the relation $R$ defined in the set A of all triangles as $R =\left\{\left( T _{1},\, T _{2}\right):\, T _{1}\right.$ is similar to $\left. T _{2}\right\}$, is equivalence relation. Consider three right angle triangles $T _{1}$ with sides $3,\,4,\,5, \,T _{2}$ with sides $5,\,12\,,13 $ and $T _{3}$ with sides $6,\,8,\,10 .$ Which triangles among $T _{1},\, T _{2}$ and $T _{3}$ are related?

Let $A = \{1, 2, 3, 4\}$ and let $R= \{(2, 2), (3, 3), (4, 4), (1, 2)\}$ be a relation on $A$. Then $R$ is

Let $A =\{1,2,3,4, \ldots .10\}$ and $B =\{0,1,2,3,4\}$ The number of elements in the relation $R =\{( a , b )$ $\left.\in A \times A : 2( a - b )^2+3( a - b ) \in B \right\}$ is $.........$.

  • [JEE MAIN 2023]