જો સંબંધ $R$ એ ગણ $N$ પરએ રીતે વ્યાખ્યીત છે કે જેથી $\{(x, y)| x, y \in N, 2x + y = 41\}$. તો $R$ એ . . .
સ્વવાચક
સંમિત
પરંપરિત
એકપણ નહીં.
ધારોકે $A =\{-4,-3,-2,0,1,3,4\}$ અને $R =\left\{(a, b) \in A \times A : b=|a|\right.$ આથવા $\left.b^2=a+1\right\}$, આ $A$ પર વ્યાખ્યાયિત સંબંધ છે.તો સંબંધ $R$ સ્વવાચક તથા સંમિત બને તે માટે તેમા ઉમેરવા પડતા ન્યૂનતમ ઘટકની સંખ્યા $...........$ છે.
સંબંધ $R$ એ ગણ $A = \{1, 2, 3, 4, 5\}$ પર વ્યાખ્યાયિત હોય તો $R = \{(x, y)$ : $|{x^2} - {y^2}| < 16\} $ =
જો $A = \{1, 2, 3, 4\}$ અને $R$ એ $A$ પરનો સંબંધ છે કે જેથી $R = \{(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1), (3, 1), (1, 3)\}$.તો $R$ એ . . .
$XY$ સમતલની બધી જ રેખાઓનો ગણ $L$ લો અને $L$ પર સંબંધ $R = \{ \left( {{L_1},{L_2}} \right):$ રેખા ${L_1}$ એ રેખા ${{L_2}}$, ને સમાંતર છે; વડે વ્યાખ્યાયિત છે. સાબિત કરો કે $R$ સામ્ય સંબંધ છે. જે રેખાઓ $y=2 x+4$ સાથે સંબંધ $R$ દ્વારા સંબંધિત હોય તેવી તમામ રેખાઓનો ગણ શોધો. નોંધ : સ્વીકારી લો કે, પ્રત્યેક રેખા પોતાને સમાંતર છે.
જો $R$ અને $S$ એ ગણ $A$ પરના અરિકત સંબંધ છે તો આપેલ વિધાન પૈકી ... અસત્ય છે.