8. Sequences and Series
hard

Let $a_1, a_2, a_3, \ldots$ be in an arithmetic progression of positive terms.

Let $\mathrm{A}_{\mathrm{k}}=\mathrm{a}_1{ }^2-\mathrm{a}_2{ }^2+\mathrm{a}_3{ }^2-\mathrm{a}_4{ }^2+\ldots+\mathrm{a}_{2 \mathrm{k}-1}{ }^2-\mathrm{a}_{2 \mathrm{k}}{ }^2$.

If $\mathrm{A}_3=-153, \mathrm{~A}_5=-435$ and $\mathrm{a}_1{ }^2+\mathrm{a}_2{ }^2+\mathrm{a}_3{ }^2=66$, then $\mathrm{a}_{17}-\mathrm{A}_7$ is equal to....................

A

$920$

B

$852$

C

$910$

D

$911$

(JEE MAIN-2024)

Solution

$ \mathrm{d} \rightarrow \text { common diff. } $

$ \mathrm{A}_{\mathrm{k}}=-\mathrm{kd}[2 \mathrm{a}+(2 \mathrm{k}-1) \mathrm{d}] $

$ \mathrm{A}_3=-153 $

$ \Rightarrow 153=13 \mathrm{~d}[2 \mathrm{a}+5 \mathrm{~d}] $

$ 51=\mathrm{d}[2 \mathrm{a}+5 \mathrm{~d}] $

$ \mathrm{A}_5=-435 $

$ 435=5 \mathrm{~d}[2 \mathrm{a}+9 \mathrm{~d}] $

$ 87=\mathrm{d}[2 \mathrm{a}+9 \mathrm{~d}] $

$ (2)-(1) $

$ 36=4 \mathrm{~d}^2$

$ \mathrm{~d}=3, \mathrm{a}=1 $

$ \mathrm{a}_{17}-\mathrm{A}_7=49-[-7.3[2+39]]=910$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.