A man deposited $Rs$ $10000$ in a bank at the rate of $5 \%$ simple interest annually. Find the amount in $15^{\text {th }}$ year since he deposited the amount and also calculate the total amount after $20$ years.
It is given that the man deposited $Rs.$ $10000$ in a bank at the rate of $5 \%$ simple interest annually.
$=\frac{5}{100} \times Rs .10000= Rs .500$
$\therefore$ Interest in first year $10000+\underbrace{500+500+\ldots+500}_{14 \text { times }}$
Amount in $15^{\text {th }}$ year
$= Rs . 10000+14 \times Rs .500$
$= Rs .10000+ Rs .7000$
$= Rs .17000$
Amount after $20$ years $= Rs .10000+\underbrace{500+500+\ldots+500}_{20 \text { times }}$
$= Rs .10000+20 \times Rs .500$
$= Rs .10000+ Rs .10000$
$=R s .20000$
Find the sum of integers from $1$ to $100$ that are divisible by $2$ or $5.$
Let ${a_1},{a_2},{a_3}, \ldots $ be terms of $A.P.$ If $\frac{{{a_1} + {a_2} + \ldots + {a_p}}}{{{a_1} + {a_2} + \ldots + {a_q}}} = \frac{{{p^2}}}{{{q^2}}},p \ne q$ then $\frac{{{a_6}}}{{{a_{21}}}}$ equals
Let $x _1, x _2 \ldots ., x _{100}$ be in an arithmetic progression, with $x _1=2$ and their mean equal to $200$ . If $y_i=i\left(x_i-i\right), 1 \leq i \leq 100$, then the mean of $y _1, y _2$, $y _{100}$ is
If the roots of the equation $x^3 - 9x^2 + \alpha x - 15 = 0 $ are in $A.P.$, then $\alpha$ is
If the sum of the $10$ terms of an $A.P.$ is $4$ times to the sum of its $5$ terms, then the ratio of first term and common difference is