A man deposited $Rs$ $10000$ in a bank at the rate of $5 \%$ simple interest annually. Find the amount in $15^{\text {th }}$ year since he deposited the amount and also calculate the total amount after $20$ years.
It is given that the man deposited $Rs.$ $10000$ in a bank at the rate of $5 \%$ simple interest annually.
$=\frac{5}{100} \times Rs .10000= Rs .500$
$\therefore$ Interest in first year $10000+\underbrace{500+500+\ldots+500}_{14 \text { times }}$
Amount in $15^{\text {th }}$ year
$= Rs . 10000+14 \times Rs .500$
$= Rs .10000+ Rs .7000$
$= Rs .17000$
Amount after $20$ years $= Rs .10000+\underbrace{500+500+\ldots+500}_{20 \text { times }}$
$= Rs .10000+20 \times Rs .500$
$= Rs .10000+ Rs .10000$
$=R s .20000$
The number of terms in the series $101 + 99 + 97 + ..... + 47$ is
If the $10^{\text {th }}$ term of an A.P. is $\frac{1}{20}$ and its $20^{\text {th }}$ term is $\frac{1}{10},$ then the sum of its first $200$ terms is
The difference between an integer and its cube is divisible by
If $< {a_n} >$ is an $A.P$. and $a_1 + a_4 + a_7 + .......+ a_{16} = 147$, then $a_1 + a_6 + a_{11} + a_{16}$ is equal to
The number of terms in an $A .P.$ is even ; the sum of the odd terms in it is $24$ and that the even terms is $30$. If the last term exceeds the first term by $10\frac{1}{2}$ , then the number of terms in the $A.P.$ is