Let $\alpha \beta \gamma=45 ; \alpha, \beta, \gamma \in R$. If $x(\alpha, 1,2)+y(1, \beta, 2)$ $+z(2,3, \gamma)=(0,0,0)$ for some $x, y, z \in R, x y z \neq$ 0 , then $6 \alpha+4 \beta+\gamma$ is equal to..............

  • [JEE MAIN 2024]
  • A

    $55$

  • B

    $56$

  • C

    $54$

  • D

    $31$

Similar Questions

Let the area of the triangle with vertices $A (1, \alpha)$, $B (\alpha, 0)$ and $C (0, \alpha)$ be $4\, sq.$ units. If the point $(\alpha,-\alpha),(-\alpha, \alpha)$ and $\left(\alpha^{2}, \beta\right)$ are collinear, then $\beta$ is equal to

  • [JEE MAIN 2022]

If the system of linear equations $x+y+3 z=0$

$x+3 y+k^{2} z=0$

$3 x+y+3 z=0$

has a non-zero solution $(x, y, z)$ for some $k \in R ,$ then $x +\left(\frac{ y }{ z }\right)$ is equal to

  • [JEE MAIN 2020]

Suppose $D = \left| {\,\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}\,} \right|$ and $D' = \left| {\,\begin{array}{*{20}{c}}{{a_1} + p{b_1}}&{{b_1} + q{c_1}}&{{c_1} + r{a_1}}\\{{a_2} + p{b_2}}&{{b_2} + q{c_2}}&{{c_2} + r{a_2}}\\{{a_3} + p{b_3}}&{{b_3} + q{c_3}}&{{c_3} + r{a_3}}\end{array}\,} \right|$, then

Let $p$ and $p+2$ be prime numbers and let $\Delta=\left|\begin{array}{ccc}p ! & (p+1) ! & (p+2) ! \\ (p+1) ! & (p+2) ! & (p+3) ! \\ (p+2) ! & (p+3) ! & (p+4) !\end{array}\right|$ Then the sum of the maximum values of $\alpha$ and $\beta$, such that $p ^{\alpha}$ and $( p +2)^{\beta}$ divide $\Delta$, is $........$

  • [JEE MAIN 2022]

The sum of distinct values of $\lambda$ for which the system of equations

$(\lambda-1) x+(3 \lambda+1) y+2 \lambda z=0$

$(\lambda-1) x+(4 \lambda-2) y+(\lambda+3) z=0$

$2 x+(3 \lambda+1) y+3(\lambda-1) z=0$

has non-zero solutions, is

  • [JEE MAIN 2020]