- Home
- Standard 12
- Mathematics
Find the equation of the line joining $\mathrm{A}(1,3)$ and $\mathrm{B}(0,0)$ using determinants and find $\mathrm{k}$ if $\mathrm{D}(\mathrm{k}, 0)$ is a point such that area of triangle $\mathrm{ABD}$ is $3 \,\mathrm{sq}$ $\mathrm{units}$.
$\mp 5$
$\mp 2$
$\mp 7$
$\mp 9$
Solution
Let $P(x, y)$ be any point on $AB$. Then, area of triangle $ABP$ is zero (Why?). So
$\frac{1}{2}\left|\begin{array}{lll}
0 & 0 & 1 \\
1 & 3 & 1 \\
x & y & 1
\end{array}\right|=0$
This gives $\frac{1}{2}(y-3 x)=0 \text { or } y=3 x$
which is the equation of required line $\mathrm{AB}$.
Also, since the area of the triangle $\mathrm{ABD}$ is $3$ sq. units, we have
$\frac{1}{2}\left|\begin{array}{lll}
1 & 3 & 1 \\
0 & 0 & 1 \\
k & 0 & 1
\end{array}\right|=\pm 3$
This gives, $\frac{-3 k}{2}=\pm 3,$ i.c., $k=\mp 2$