ધારોકે $x_1, x_2, x_3, x_4$ એ સમીકરણ $4 x^4+8 x^3-17 x^2-12 x+9=0$ નાં બીજ છે અને $\left(4+x_1^2\right)\left(4+x_2^2\right)\left(4+x_3^2\right)\left(4+x_4^2\right)=\frac{125}{16} m$. તો $m$ નું મૂલ્ય ............ છે.
$357$
$347$
$657$
$221$
જો $f(x)={{x}^{2}}-x+k-2,k\in R$ હોય તો $k$ ની કિમતોનો ગણ મેળવો કે જેથી $y=\left| f\left( \left| x \right| \right) \right|$ ને બિન્ન $5$ બિંદુઓ પર વિકલનીય ન થાય
સમીકરણ ${e^{\sin x}} - {e^{ - \sin x}} - 4$ $ = 0$ ના વાસ્તવિક બીજની સંખ્યા મેળવો.
સમીકરણ $\frac{{p + q - x}}{r} + \frac{{q + r - x}}{p}\,\, + \,\,\frac{{r + p - x}}{q}\,\, + \;\,\frac{{4x}}{{p + q + r}} = 0$ ને ઉકેલ........છે
જો $x = \sqrt {7 + 4\sqrt 3 } $, હોય તો $, x + \frac{1}{x} = ......$
સમીકરણ$\left( e ^{2 x }-4\right)\left(6 e ^{2 x }-5 e ^{ x }+1\right)=0$ નાં તમામ વાસ્તવિક બીજોનો સરવાળો .........છે.