જો $p, q$ અને $r$ $(p \ne q,r \ne 0),$ વાસ્તવિક સંખ્યા છે કે જેથી $\frac{1}{{x + p}} + \frac{1}{{x + q}} = \frac{1}{r}$ ના ઉકેલો સમાન મુલ્ય અને વિરુદ્ધ ચિહનના હોય તો બંને ઉકેલોના વર્ગ નો સરવાળો મેળવો.
${p^2} + {q^2} + {r^2}$
${p^2} + {q^2}$
$2({p^2} + {q^2})$
$\frac{{{p^2} + {q^2}}}{2}$
સમીકરણ ${4^x} - {3^{x\,\; - \;\frac{1}{2}}} = {3^{x + \frac{1}{2}}} - {2^{2x - 1}}\,$ માં ${\rm{x}}$ કિંમત =.....
જો $2 + 3i$ એ સમીકરણ $2x^3 -9x^2 + kx- 13 = 0,$ $k \in R,$ નો એક ઉકેલ હોય તો આ સમીકરણના વાસ્તવિક ઉકેલ મેળવો.
સમીકરણ $x^{4}-3 x^{3}-2 x^{2}+3 x+1=10$ નાં તમામ બીજ ના ધનોંનો સરવાળો $\dots\dots\dots$ છે.
અહી ગણ $\mathrm{S}$ એ $a$ ની પૃણાંક કિમંતો નો ગણ છે કે જેથી $\frac{\mathrm{ax}^2+2(\mathrm{a}+1) \mathrm{x}+9 \mathrm{a}+4}{\mathrm{x}^2-8 \mathrm{x}+32}<0, \forall \mathrm{x} \in \mathbb{R}$ નું પાલન થાય છે તો ગણ $\mathrm{S}$ ની સભ્ય સંખ્યા મેળવો.
જો ${\rm{x}}$ બરાબર શું થાય, તો $\frac{{8{x^2}\, + \,16x\, - \,51}}{{(2x - \,3)\,(x\, + \,4)}}\, > \,3\,\, = \,\,\,......$