- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
hard
Let $A=\left[\begin{array}{lll}2 & a & 0 \\ 1 & 3 & 1 \\ 0 & 5 & b\end{array}\right]$ If $A^3=4 A^2-A-21 I$, where I is the identity matrix of order $3 \times 3$, then $2 a+3 b$ is equal to :
A$-10$
B$-13$
C$-9$
D$-12$
(JEE MAIN-2024)
Solution
$ A^3-4 A^2+A+21 I=0 $
$ \operatorname{tr}(A)=4=5+b \Rightarrow b=-1 $
$ |A|=-21 $
$ -16+a=-21 \Rightarrow a=-5 $
$ 2 a+3 b=-13$
$ \operatorname{tr}(A)=4=5+b \Rightarrow b=-1 $
$ |A|=-21 $
$ -16+a=-21 \Rightarrow a=-5 $
$ 2 a+3 b=-13$
Standard 12
Mathematics