Let $A=\{2,3,6,8,9,11\}$ and $B=\{1,4,5,10,15\}$
Let $\mathrm{R}$ be a relation on $\mathrm{A} \times \mathrm{B}$ define by $(\mathrm{a}, \mathrm{b}) \mathrm{R}(\mathrm{c}, \mathrm{d})$ if and only if $3 \mathrm{ad}-7 \mathrm{bc}$ is an even integer. Then the relation $\mathrm{R}$ is
reflexive but not symmetric.
transitive but not symmetric.
reflexive and symmetric but not transitive.
an equivalence relation.
Let $P ( S )$ denote the power set of $S =\{1,2,3, \ldots, 10\}$. Define the relations $R_1$ and $R_2$ on $P(S)$ as $A R_1 B$ if $\left( A \cap B ^{ c }\right) \cup\left( B \cap A ^{ c }\right)=\varnothing$ and $AR _2 B$ if $A \cup B ^{ c }=$ $B \cup A ^{ c }, \forall A , B \in P ( S )$. Then :
$R$ is a relation from $\{11, 12, 13\}$ to $\{8, 10, 12\}$ defined by $y = x - 3$. Then ${R^{ - 1}}$ is
The number of relations $R$ from an $m$-element set $A$ to an $n$-element set $B$ satisfying the condition$\left(a, b_1\right) \in R,\left(a, b_2\right) \in R \Rightarrow b_1=b_2$ for $a \in A, b_1, b_2 \in B$ is
Give an example of a relation. Which is Reflexive and symmetric but not transitive.
Show that the relation $R$ in the set $A$ of all the books in a library of a college, given by $R =\{(x, y): x $ and $y$ have same number of pages $\}$ is an equivalence relation.