3 and 4 .Determinants and Matrices
hard

Let $\lambda, \mu \in R$. If the system of equations

$ 3 x+5 y+\lambda z=3 $

$ 7 x+11 y-9 z=2 $

$ 97 x+155 y-189 z=\mu$

has infinitely many solutions, then $\mu+2 \lambda$ is equal to :

A

$25$

B

$24$

C

$27$

D

$22$

(JEE MAIN-2024)

Solution

$ 3 x+5 y+\lambda z=3 $

$ 7 x+11 y-9 z=2 $

$ 97 x+155 y-189 z=\mu $

$ 93 x+155 y+31 \lambda z=93 $

$ 97 x+155 y-189 z=\mu $

$ -\quad-\quad+\quad- $

$ -4 x+(31 \lambda+189) z=93-\mu $

$ 1085 x+1705 y-1395 z=310 $

$ 1067 x+1705 y-2079 z=11 \mu $

$ -\quad+\quad-\quad-\quad $

$ 18 x+684 z=310-11 \mu $

$ -36 x+9(31 \lambda+189) z=9(93-\mu) $

$ 36 x+1368 z=2(310-11 \mu) $

$ (279 \lambda+3069) z=1457-31 \mu $

$ \text { for infinite solutions – } $

$ \lambda=\frac{-3069}{279}=\frac{-341}{31} $

$ \mu=\frac{1457}{31}$

$\mu+2 \lambda=\frac{1457-682}{31}=\frac{775}{31}=25$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.