- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
hard
Let $\lambda, \mu \in R$. If the system of equations
$ 3 x+5 y+\lambda z=3 $
$ 7 x+11 y-9 z=2 $
$ 97 x+155 y-189 z=\mu$
has infinitely many solutions, then $\mu+2 \lambda$ is equal to :
A
$25$
B
$24$
C
$27$
D
$22$
(JEE MAIN-2024)
Solution
$ 3 x+5 y+\lambda z=3 $
$ 7 x+11 y-9 z=2 $
$ 97 x+155 y-189 z=\mu $
$ 93 x+155 y+31 \lambda z=93 $
$ 97 x+155 y-189 z=\mu $
$ -\quad-\quad+\quad- $
$ -4 x+(31 \lambda+189) z=93-\mu $
$ 1085 x+1705 y-1395 z=310 $
$ 1067 x+1705 y-2079 z=11 \mu $
$ -\quad+\quad-\quad-\quad $
$ 18 x+684 z=310-11 \mu $
$ -36 x+9(31 \lambda+189) z=9(93-\mu) $
$ 36 x+1368 z=2(310-11 \mu) $
$ (279 \lambda+3069) z=1457-31 \mu $
$ \text { for infinite solutions – } $
$ \lambda=\frac{-3069}{279}=\frac{-341}{31} $
$ \mu=\frac{1457}{31}$
$\mu+2 \lambda=\frac{1457-682}{31}=\frac{775}{31}=25$
Standard 12
Mathematics
Similar Questions
normal
normal