Let $f(x)=2+\cos x$ for all real $x$.

$STATEMENT -1$ : For each real $\mathrm{t}$, there exists a point $\mathrm{c}$ in $[\mathrm{t}, \mathrm{t}+\pi]$ such that $\mathrm{f}^{\prime}(\mathrm{c})=0$. because

$STATEMENT -2$: $f(t)=f(t+2 \pi)$ for each real $t$.

  • [IIT 2007]
  • A

    Statement -$1$ is True, Statement -$2$ is True; Statement-$2$ is a correct explanation for Statement-$1$

  • B

    Statement -$1$ is True, Statement - $2$ is True; Statement-$2$ is $NOT$ a correct explanation for Statement-$1$

  • C

    Statement -$1$ is True, Statement -$2$ is False

  • D

    Statement -$1$ is False, Statement -$2$ is True

Similar Questions

If the function $f(x) = {x^3} - 6{x^2} + ax + b$ satisfies Rolle’s theorem in the interval $[1,\,3]$ and $f'\left( {{{2\sqrt 3 + 1} \over {\sqrt 3 }}} \right) = 0$, then $a =$ ..............

Which of the following function can satisfy Rolle's theorem ?

Examine the applicability of Mean Value Theorem:

$(i)$ $f(x)=[x]$ for $x \in[5,9]$

$(ii)$ $f(x)=[x]$ for $x \in[-2,2]$

$(iii)$ $f(x)=x^{2}-1$ for $x \in[1,2]$

If $f:[-5,5] \rightarrow \mathrm{R}$ is a differentiable function and if $f^{\prime}(x)$ does not vanish anywhere, then prove that $f(-5) \neq f(5).$

If the equation

${a_n}{x^{n - 1}} + \,{a_{n - 1}}{x^{n - 1}} + \,......\, + \,{a_1}x = 0,\,{a_1} \ne 0,n\, \geqslant \,2,$

has a positive root $x= \alpha ,$ then the equation 

$n{a_n}{x^{n - 1}} + \,(n - 1){a_{n - 1}}{x^{n - 1}} + \,......\, + \,{a_1} = 0$

has a positive root which is