Let $P\left(x_1, y_1\right)$ and $Q\left(x_2, y_2\right), y_1<0, y_2<0$, be the end points of the latus rectum of the ellipse $x^2+4 y^2=4$. The equations of parabolas with latus rectum $P Q$ are
$(A)$ $x^2+2 \sqrt{3} y=3+\sqrt{3}$
$(B)$ $x^2-2 \sqrt{3} y=3+\sqrt{3}$
$(C)$ $x^2+2 \sqrt{3} y=3-\sqrt{3}$
$(D)$ $x^2-2 \sqrt{3} y=3-\sqrt{3}$
$B,D$
$C,A$
$B,C$
$B,C$
Let $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a>b$ be an ellipse with foci $F_1$ and $F_2$. Let $AO$ be its semi-minor axis, where $O$ is the centre of the ellipse. The lines $A F_1$ and $A F_2$, when extended, cut the ellipse again at points $B$ and $C$ respectively. Suppose that the $\triangle A B C$ is equilateral. Then, the eccentricity of the ellipse is
On the ellipse $\frac{{{x^2}}}{{18}} + \frac{{{y^2}}}{8} = 1$ the point $M$ nearest to the line $2x - 3y + 25 = 0$ is
Find the equation of the ellipse, with major axis along the $x-$ axis and passing through the points $(4,\,3)$ and $(-1,\,4)$
If the eccentricity of an ellipse be $5/8$ and the distance between its foci be $10$, then its latus rectum is
Let $PQ$ be a focal chord of the parabola $y^{2}=4 x$ such that it subtends an angle of $\frac{\pi}{2}$ at the point $(3, 0)$. Let the line segment $PQ$ be also a focal chord of the ellipse $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a^{2}>b^{2}$. If $e$ is the eccentricity of the ellipse $E$, then the value of $\frac{1}{e^{2}}$ is equal to