Gujarati
Hindi
10-2. Parabola, Ellipse, Hyperbola
normal

Let $P\left(x_1, y_1\right)$ and $Q\left(x_2, y_2\right), y_1<0, y_2<0$, be the end points of the latus rectum of the ellipse $x^2+4 y^2=4$. The equations of parabolas with latus rectum $P Q$ are

$(A)$ $x^2+2 \sqrt{3} y=3+\sqrt{3}$

$(B)$ $x^2-2 \sqrt{3} y=3+\sqrt{3}$

$(C)$ $x^2+2 \sqrt{3} y=3-\sqrt{3}$

$(D)$ $x^2-2 \sqrt{3} y=3-\sqrt{3}$

A

$B,D$

B

$C,A$

C

$B,C$

D

$B,C$

(IIT-2008)

Solution

$ \frac{x^2}{4}+\frac{y^2}{1}=1 $

$ b^2=a^2\left(1-e^2\right) $

$ \Rightarrow e=\frac{\sqrt{3}}{2} $

$ \left.\Rightarrow P\left(\sqrt{3},-\frac{1}{2}\right) \text { and } Q\left(-\sqrt{3},-\frac{1}{2}\right) \text { (given } y_1 \text { and } y_2 \text { less than } 0\right)$

Co-ordinates of mid-point of $P Q$ are

$\mathrm{R} \equiv\left(0,-\frac{1}{2}\right) \text {. }$

$P Q=2 \sqrt{3}=$ length of latus rectum.

$\Rightarrow$ two parabola are possible whose vertices are $\left(0,-\frac{\sqrt{3}}{2}-\frac{1}{2}\right)$ and $\left(0, \frac{\sqrt{3}}{2}-\frac{1}{2}\right)$.

Hence the equations of the parabolas are $x^2-2 \sqrt{3} y=3+\sqrt{3}$ and $x^2+2 \sqrt{3} y=3-\sqrt{3}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.