Let $L$ be a tangent line to the parabola $y^{2}=4 x-20$ at $(6,2)$ . If $L$ is also a tangent to the ellipse $\frac{ x ^{2}}{2}+\frac{ y ^{2}}{ b }=1,$ then the value of $b$ is equal to ..... .

  • [JEE MAIN 2021]
  • A

    $11$

  • B

    $14$

  • C

    $16$

  • D

    $20$

Similar Questions

If the lines $x -2y = 12$ is tangent to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ at the point $\left( {3,\frac{-9}{2}} \right)$, then the length of the latus rectum of the ellipse is

  • [JEE MAIN 2019]

The distance between the foci of an ellipse is 16 and eccentricity is $\frac{1}{2}$. Length of the major axis of the ellipse is

Locus of the foot of the perpendicular drawn from the centre upon any tangent to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, is

The equation of an ellipse whose focus $(-1, 1)$, whose directrix is $x - y + 3 = 0$ and whose eccentricity is $\frac{1}{2}$, is given by

Let $PQ$ be a focal chord of the parabola $y^{2}=4 x$ such that it subtends an angle of $\frac{\pi}{2}$ at the point $(3, 0)$. Let the line segment $PQ$ be also a focal chord of the ellipse $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a^{2}>b^{2}$. If $e$ is the eccentricity of the ellipse $E$, then the value of $\frac{1}{e^{2}}$ is equal to

  • [JEE MAIN 2022]