- Home
- Standard 11
- Mathematics
Let $m$ be the smallest positive integer such that the coefficient of $x^2$ in the expansion of $(1+x)^2+(1+x)^3+\cdots+(1+x)^{49}+(1+m x)^{50}$ is $(3 n+1)^{51} C_3$ for some positive integer $n$. Then the value of $n$ is
$3$
$2$
$5$
$4$
Solution
Coefficient of $x^2$ in expansion
$=1+{ }^3 C_2+{ }^4 C_2+.{ }^5 C_2+\ldots \ldots+{ }^{49} C_2+$
${ }^{50} C_2 \cdot m^2$
$\text { [as } .^n C_r+.{ }^n C_{r-1}=.{ }^{n+1} C_r \text { ] }$
$=\left(.{ }^3 C_5+.{ }^3 C_2\right)+.{ }^4 C_2+.{ }^5 C_2+\ldots .+.{ }^{49} C_2+$
${ }^{50} C_2 m^2$
$=\left(.{ }^4 C_3+.{ }^4 C_2\right)+\ldots . .+{ }^{50} C_2 m^2$
$=.{ }^5 C_3+.{ }^{50} C_2 m^2+.{ }^{50} C_2 m^2$
$=.{ }^{50} C_3+.{ }^{50} C_2 m^2+.{ }^{50} C_2-.{ }^{50} C_2$
$=.{ }^{51} C_3+.{ }^{50} C_2\left(m^2-1\right)$
$=(3 n+1) .{ }^{51} C_3 \text { (given) }$
$\therefore 3 n . \frac{51}{3} .{ }^{50} C_2=.{ }^{50} C_2\left(m^2-1\right)$
$\frac{m^2-1}{51}=n$
Value of $n$ is $5$ .