- Home
- Standard 11
- Mathematics
If the coefficients of ${T_r},\,{T_{r + 1}},\,{T_{r + 2}}$ terms of ${(1 + x)^{14}}$ are in $A.P.$, then $r =$
$6$
$7$
$8$
$9$
Solution
(d) ${T_{r\,}} = {\,^{14}}{C_{r – 1}}\,{x^{r – 1}}\,;\,\,{T_{r + 1}}\, = \,{\,^{14}}{C_r}\,{x^r}$; ${T_{r + 2}} = {\,^{14}}{C_{r + 1}}\,{x^{r + 1}}$
By the given condition $2\,{.^{14}}{C_r} = {\,^{14}}{C_{r – 1}} + {\,^{14}}{C_{r + 1}}$ …..$(i)$
==> $2\,.\frac{{14!}}{{r!\,\,(14 – r)!}}\, = \,\frac{{14!}}{{(r – 1)!\,\,(15 – r)!}} + \frac{{14!}}{{(r + 1)!\,(13 – r)!}}$
==> $\frac{2}{{r.(r – 1)!.(14 – r).(13 – r)!}}$=$\frac{1}{{(r – 1)!.(15 – r).(14 – r).(13 – r)!}}$
+$\frac{1}{{(r + 1)\,r(r – 1)\,!\,(13 – r)\,!}}$
==> $\frac{2}{{r(14 – r)}} = \frac{1}{{(15 – r)(14 – r)}} + \frac{1}{{(r + 1)r}}$
==> $\frac{1}{{r(14 – r)}} – \frac{1}{{(15 – r)(14 – r)}} = \frac{1}{{(r + 1)r}} – \frac{1}{{r(14 – r)}}$
==> $\frac{{(15 – r) – r}}{{r(15 – r)(14 – r)}} = \frac{{(14 – r) – (r + 1)}}{{(r + 1)r(14 – r)}}$
==> $\frac{{15 – 2r}}{{15 – r}} = \frac{{13 – 2r}}{{r + 1}}$
==> $15r + 15 – 2{r^2} – 2r = 195 – 30r – 13r + 2{r^2}$
==> $4{r^2} – 56r + 180 = 0\,\,$
$\Rightarrow \,{r^2} – 14r + 45 = 0$
==> $(r – 5)(r – 9) = 0 $
$\Rightarrow r = 5,\,9$
But $5$ is not given.
Hence $r = 9.$
$Trick :$ Put the value of $r$ from options in equation $(i)$, only $(d)$ satisfy it.