माना कि $m$ ऐसा न्यूनतम धनात्मक पूर्णांक (smallest positive integer) है कि $(1+x)^2+(1+x)^3+\cdots+(1+x)^{49}+(1+m x)^{50}$ के विस्तार में $x^2$ का गुणांक $(3 n+1)^{51} C_3$ किसी धनात्मक पूर्णांक $n$ के लिए है। तब $n$ का मान है
$3$
$2$
$5$
$4$
${(x + a)^n}$ के विस्तार में दूसरा, तीसरा तथा चौथा पद क्रमश: $240, 720$ और $1080$ हैं, तो $n$ का मान होगा
$\left(7^{1 / 5}-3^{1 / 10}\right)^{60}$ के द्विपद प्रसार में अपरिमेय पदों की कुल संख्या होगी
${(a + 2x)^n}$ के विस्तार में $r$ वाँ पद होगा
$(1-x)^{2008}\left(1+x+x^2\right)^{2007}$ के प्रसार में $x^{2012}$ का गुणांक बराबर है ..............|
${(1 + x)^{2n}}$ के विस्तार में मध्य पद होगा