Gujarati
3 and 4 .Determinants and Matrices
medium

Let $M=\left(a_{i j}\right), i, j \in\{1,2,3\}$, be the $3 \times 3$ matrix such that $a_{i j}=1$ if $j+1$ is divisible by $i$, otherwise $a_{i j}=0$. Then which of the following statements is (are) true?

($A$) $\mathrm{M}$ is invertible

($B$) There exists a nonzero column matrix $\left(\begin{array}{l}a_1 \\ a_2 \\ a_3\end{array}\right)$ such that $M\left(\begin{array}{l}a_1 \\ a_2 \\ a_3\end{array}\right)=\left(\begin{array}{l}-a_1 \\ -a_2 \\ -a_3\end{array}\right)$

($C$) The set $\left\{\mathrm{X} \in \mathbb{R}^3: \mathrm{MX}=\mathbf{0} \neq \neq 0\right\}$, where $\mathbf{0}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$

($D$) The matrix $(M-2 I)$ is invertible, where $I$ is the $3 \times 3$ identity matrix

A

$B,C$

B

$B,D$

C

$B,A$

D

$A,C,D$

(IIT-2023)

Solution

$M=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$

$|M|=-1+1=0 \Rightarrow M$ is singular so non-invertible

(B) $\mathrm{M}\left[\begin{array}{l}\mathrm{a}_1 \\ \mathrm{a}_2 \\ a_3\end{array}\right]=\left[\begin{array}{l}-a_1 \\ -a_2 \\ -a_3\end{array}\right] \Rightarrow\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{l}a_1 \\ a_2 \\ a_3\end{array}\right]=\left[\begin{array}{l}-a_1 \\ -a_2 \\ -a_3\end{array}\right]$

$\left.\begin{array}{l}a_1+a_2+a_3=-a_1 \\ a_1+a_3=-a_2 \\ a_2=-a_3\end{array}\right\} \Rightarrow a_1=0$ and $a_2+a_3=0$ infinite solutions exists [B] is correct.

Option $(D)$

$\mathrm{M}-2 \mathrm{I}=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]-2\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}-1 & 1 & 1 \\ 1 & -2 & 1 \\ 0 & 1 & -2\end{array}\right]$

$|M-2 I|=0 \Rightarrow[D]$ is wrong Option ($C$) :

$\mathrm{MX}=0 \Rightarrow\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$

$x+y+z=0$

$x+z=0$

$y=0$

$\therefore$ Infinite solution

$[\mathrm{C}]$ is correct

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.