Gujarati
Hindi
4-2.Quadratic Equations and Inequations
medium

Let $p, q$ be integers and let $\alpha, \beta$ be the roots of the equation, $x^2-x-1=0$, where $\alpha \neq \beta$. For $n=0,1,2, \ldots$, let $a_n=$ $p \alpha^n+q \beta^n$.

$FACT$ : If $a$ and $b$ are rational numbers and $a+b \sqrt{5}=0$, then $a=0=b$.

($1$) $a_{12}=$

$[A]$ $a_{11}-a_{10}$  $[B]$ $a_{11}+a_{10}$  $[C]$ $2 a_{11}+a_{10}$   $[D]$ $a_{11}+2 a_{10}$

($2$) If $a_4=28$, then $p+2 q=$

$[A] 21$   $[B] 14$   $[C] 7$    $[D] 12$

 answer the quetion ($1$) and ($2$)

A

$A,C$

B

$A,B$

C

$A,D$

D

$B,D$

(IIT-2017)

Solution

($1$) $\text { As } a_{n+1}-a_n-a_{n-1}=0$

$\text { So } a_{12}=a_{11}+a_{10}$

($2$) $a_4=2 a_0+3 a_1$

$a_4=(q-p)(3 \beta)+5 p+2 q=28$

$\Rightarrow p=q=4$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.