Let $a, b, c$ be non-zero real roots of the equation $x^3+a x^2+b x+c=0$. Then,

  • [KVPY 2020]
  • A

    There are infinitely many such triples $a, b, c$

  • B

    There is exactly one such triple $a, b, c$

  • C

    There are exactly two such triples a, $b, c$

  • D

    There are exactly three such triples a, $b, c$

Similar Questions

If $\alpha $ and $\beta $ are the roots of the quadratic equation, $x^2 + x\, sin\,\theta  -2sin\,\theta  = 0$, $\theta  \in \left( {0,\frac{\pi }{2}} \right)$ then $\frac{{{\alpha ^{12}} + {\beta ^{12}}}}{{\left( {{\alpha ^{ - 12}} + {\beta ^{ - 12}}} \right){{\left( {\alpha  - \beta } \right)}^{24}}}}$ is equal to

  • [JEE MAIN 2019]

If $x$ is real, the function $\frac{{(x - a)(x - b)}}{{(x - c)}}$ will assume all real values, provided

  • [IIT 1984]

Let $x_1, x_2, \ldots, x_6$ be the roots of the polynomial equation $x^6+2 x^5+4 x^4+8 x^3+16 x^2+32 x+64=0$. Then,

  • [KVPY 2017]

Consider a three-digit number with the following properties:

$I$. If its digits in units place and tens place are interchanged, the number increases by $36$ ;

$II.$ If its digits in units place and hundreds place are interchanged, the number decreases by $198 .$

Now, suppose that the digits in tens place and hundreds place are interchanged. Then, the number

  • [KVPY 2017]

Let $\alpha, \beta(\alpha>\beta)$ be the roots of the quadratic equation $x ^{2}- x -4=0$. If $P _{ a }=\alpha^{ n }-\beta^{ n }, n \in N$, then $\frac{ P _{15} P _{16}- P _{14} P _{16}- P _{15}^{2}+ P _{14} P _{15}}{ P _{13} P _{14}}$ is equal to$......$

  • [JEE MAIN 2022]