Let $a, b, c$ be non-zero real roots of the equation $x^3+a x^2+b x+c=0$. Then,
There are infinitely many such triples $a, b, c$
There is exactly one such triple $a, b, c$
There are exactly two such triples a, $b, c$
There are exactly three such triples a, $b, c$
Let $f: R \rightarrow R$ be the function $f(x)=\left(x-a_1\right)\left(x-a_2\right)$ $+\left(x-a_2\right)\left(x-a_3\right)+\left(x-a_3\right)\left(x-a_1\right)$ with $a_1, a_2, a_3 \in R$.Then, $f(x) \geq 0$ if and only if
The equation $e^{4 x}+8 e^{3 x}+13 e^{2 x}-8 e^x+1=0, x \in R$ has:
If $x$ is real and $k = \frac{{{x^2} - x + 1}}{{{x^2} + x + 1}},$ then
The number of ordered pairs $(x, y)$ of real numbers that satisfy the simultaneous equations $x+y^2=x^2+y=12$ is
The set of values of $x$ which satisfy $5x + 2 < 3x + 8$ and $\frac{{x + 2}}{{x - 1}} < 4,$ is