Let $x, y, z$ be non-zero real numbers such that $\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=7$ and $\frac{y}{x}+\frac{z}{y}+\frac{x}{z}=9$, then $\frac{x^3}{y^3}+\frac{y^3}{z^3}+\frac{z^3}{x^3}-3$ is equal to
$152$
$153$
$154$
$155$
The equation $\sqrt {3 {x^2} + x + 5} = x - 3$ , where $x$ is real, has
Consider the equation ${x^2} + \alpha x + \beta = 0$ having roots $\alpha ,\beta $ such that $\alpha \ne \beta $ .Also consider the inequality $\left| {\left| {y - \beta } \right| - \alpha } \right| < \alpha $ ,then
The sum of all non-integer roots of the equation $x^5-6 x^4+11 x^3-5 x^2-3 x+2=0$ is
$\{ x \in R:|x - 2|\,\, = {x^2}\} = $
Let $y = \sqrt {\frac{{(x + 1)(x - 3)}}{{(x - 2)}}} $, then all real values of $x$ for which $y$ takes real values, are