Let $x, y, z$ be non-zero real numbers such that $\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=7$ and $\frac{y}{x}+\frac{z}{y}+\frac{x}{z}=9$, then $\frac{x^3}{y^3}+\frac{y^3}{z^3}+\frac{z^3}{x^3}-3$ is equal to
$152$
$153$
$154$
$155$
The roots of the equation $4{x^4} - 24{x^3} + 57{x^2} + 18x - 45 = 0$, If one of them is $3 + i\sqrt 6 $, are
The sum of all integral values of $\mathrm{k}(\mathrm{k} \neq 0$ ) for which the equation $\frac{2}{x-1}-\frac{1}{x-2}=\frac{2}{k}$ in $x$ has no real roots, is ..... .
Let $f(x)=a x^2+b x+c$, where $a, b, c$ are integers, Suppose $f(1)=0,40 < f(6) < 50,60 < f(7) < 70$ and $1000 t < f(50) < 1000(t+1)$ for some integer $t$. Then, the value of $t$ is
The number of real roots of the equation ${e^{\sin x}} - {e^{ - \sin x}} - 4$ $ = 0$ are