Let $P=\{\theta: \sin \theta-\cos \theta=\sqrt{2} \cos \theta\}$ and $Q=\{\theta: \sin \theta+\cos \theta=\sqrt{2} \sin \theta\}$ be two sets. Then

  • [IIT 2011]
  • A

    $P \subset Q$ and $Q-P \neq \varnothing$

  • B

    $Q \not \subset P$

  • C

    $P \not \subset Q$

  • D

    $P=Q$

Similar Questions

If $A$ and $B$ are two sets, then $A \cup B = A \cap B$ iff

If $X$ and $Y$ are two sets such that $n( X )=17, n( Y )=23$ and $n( X \cup Y )=38$
find $n( X \cap Y )$

If ${N_a} = [an:n \in N\} ,$ then ${N_5} \cap {N_7} = $

If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find

$A \cap C$

State whether each of the following statement is true or false. Justify you answer.

$\{2,3,4,5\}$ and $\{3,6\}$ are disjoint sets.