If $A$ and $B$ are any two sets, then $A \cup (A \cap B) $ is equal to
$A$
$B$
${A^c}$
${B^c}$
(a) $A \cap B \subseteq A$. Hence $A \cup (A \cap B) = A$.
If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find
$A \cap \left( {B \cup D} \right)$
If $aN = \{ ax:x \in N\} ,$ then the set $3N \cap 7N$ is …..$N$
If $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ find
$D-C$
Let $A=\{1,2,3,4,5,6\}, B=\{2,4,6,8\} .$ Find $A-B$ and $B-A$
Show that the following four conditions are equivalent:
$(i)A \subset B\,\,\,({\rm{ ii }})A – B = \phi \quad (iii)A \cup B = B\quad (iv)A \cap B = A$
Confusing about what to choose? Our team will schedule a demo shortly.