माना कि $P=\left[a_1\right]$ एक $3 \times 3$ आव्यूह (matrix) है और $Q=\left[b_1\right]$, जहाँ $b_{\|}=2^{[H]} a_{\|}$जब $1 \leq i, j \leq 3$ है। यदि $P$ के सारणिक (determinant) का मान $2$ है तो आव्यूह $Q$ के सारणिक का मान निम्न है

  • [IIT 2012]
  • A

    $2^{10}$

  • B

    $2^{11}$

  • C

    $2^{12}$

  • D

    $2^{13}$

Similar Questions

यदि $f(x) = \left| {\begin{array}{*{20}{c}}{x - 3}&{2{x^2} - 18}&{3{x^3} - 81}\\{x - 5}&{2{x^2} - 50}&{4{x^3} - 500}\\1&2&3\end{array}} \right|$ then $f(1).f(3) + f(3).f(5) + f(5).f(1)$=

$\left| {\,\begin{array}{*{20}{c}}{a + b}&{a + 2b}&{a + 3b}\\{a + 2b}&{a + 3b}&{a + 4b}\\{a + 4b}&{a + 5b}&{a + 6b}\end{array}\,} \right| = $

  • [IIT 1986]

यदि $a + b + c = 0$, तो समीकरण $\left| {\,\begin{array}{*{20}{c}}{a - x}&c&b\\c&{b - x}&a\\b&a&{c - x}\end{array}\,} \right| = 0$ के मूल हैं

$\left| {\,\begin{array}{*{20}{c}}{1 + x}&1&1\\1&{1 + y}&1\\1&1&{1 + z}\end{array}\,} \right| = $

यदि  $a, b$ और  $ c$   तीन अशून्य वास्तविक संख्यायें हैं, तो $\Delta = \left| {\,\begin{array}{*{20}{c}}{{b^2}{c^2}}&{bc}&{b + c}\\{{c^2}{a^2}}&{ca}&{c + a}\\{{a^2}{b^2}}&{ab}&{a + b}\end{array}\,} \right| $ =