- Home
- Standard 12
- Mathematics
Let $P$ be a matrix of order $3 \times 3$ such that all the entries in $P$ are from the set $\{-1,0,1\}$. Then, the maximum possible value of the determinant of $P$ is. . . . . . .
$7$
$6$
$5$
$4$
Solution
$\Delta=\left|\begin{array}{lll}a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3\end{array}\right|=\left(a_1 b_2 c_3+a_3 c_2 b_1+a_2 c_1 b_3\right)-\left(a_1 b_3 c_2+a_2 c_3 b_1+a_3 c_1 b_2\right)$
$\left\{ a _{ i }, b _{ i }, c _{ i }\right\} \equiv\{-1,0,1\} i =1,2,3$
Maximum value can be $6$, but that's not possible.
(For $\Delta=6,3$ entries should be $1$ and $6$ entries should be -$1$ in first bracket and $3$ entries should be -$1$ and $6$ entries should be $1$ in second bracket. That's a contradiction!)
$\Delta \neq 5$. (Even if one element is $0$ )
$\therefore \Delta_{\max }=4$ which is possible.
$\operatorname{Ex}:\left[\begin{array}{ccc}1 & -1 & 0 \\ 1 & 1 & 1 \\ -1 & -1 & 1\end{array}\right]$