$\left| {\begin{array}{*{20}{c}}{1 + {{\sin }^2}\theta }&{{{\sin }^2}\theta }&{{{\sin }^2}\theta }\\{{{\cos }^2}\theta }&{1 + {{\cos }^2}\theta }&{{{\cos }^2}\theta }\\{4\sin 4\theta }&{4\sin 4\theta }&{1 + 4\sin 4\theta }\end{array}} \right| = 0$ then $\sin \,4\theta $ equal to

  • A

    $1/2$

  • B

    $1$

  • C

    $-1/2$

  • D

    $-1$

Similar Questions

If $\mathrm{a, b, c}$ are in $\mathrm{A.P}$, find value of

$\left|\begin{array}{ccc}
2 y+4 & 5 y+7 & 8 y+a \\
3 y+5 & 6 y+8 & 9 y+b \\
4 y+6 & 7 y+9 & 10 y+c
\end{array}\right|$

By using properties of determinants, show that:

$\left|\begin{array}{ccc}1+a^{2}-b^{2} & 2 a b & -2 b \\ 2 a b & 1-a^{2}+b^{2} & 2 a \\ 2 b & -2 a & 1-a^{2}-b^{2}\end{array}\right|=\left(1+a^{2}+b^{2}\right)^{3}$

Evaluate $\left|\begin{array}{ccc}x & y & x+y \\ y & x+y & x \\ x+y & x & y\end{array}\right|$

Which of the following values of $\alpha$ satisfy the equation

$\left|\begin{array}{lll}(1+\alpha)^2 & (1+2 \alpha)^2 & (1+3 \alpha)^2 \\ (2+\alpha)^2 & (2+2 \alpha)^2 & (2+3 \alpha)^2 \\ (3+\alpha)^2 & (3+2 \alpha)^2 & (3+3 \alpha)^2\end{array}\right|=-648 \alpha$ ?

$(A)$ $-4$ $(B)$ $9$ $(C)$ $-9$ $(D)$ $4$

  • [IIT 2015]

A value of $\theta  \in  (0, \pi /3)$, for which $\left| {\begin{array}{*{20}{c}}
  {1 + {{\cos }^2}\,\theta }&{{{\sin }^2}\,\theta }&{4\,\cos \,6\theta } \\ 
  {{{\cos }^2}\,\theta }&{1 + {{\sin }^2}\,\theta }&{4\,\cos \,6\theta } \\ 
  {{{\cos }^2}\,\theta }&{{{\sin }^2}\,\theta }&{1 + 4\,\cos \,6\theta } 
\end{array}} \right| = 0$, is

  • [JEE MAIN 2019]