3 and 4 .Determinants and Matrices
hard

$\left| {\begin{array}{*{20}{c}}{1 + {{\sin }^2}\theta }&{{{\sin }^2}\theta }&{{{\sin }^2}\theta }\\{{{\cos }^2}\theta }&{1 + {{\cos }^2}\theta }&{{{\cos }^2}\theta }\\{4\sin 4\theta }&{4\sin 4\theta }&{1 + 4\sin 4\theta }\end{array}} \right| = 0$ then $\sin \,4\theta $ equal to

A

$1/2$

B

$1$

C

$-1/2$

D

$-1$

Solution

(c) $\left| {\,\begin{array}{*{20}{c}}{1 + {{\sin }^2}\theta }&{{{\sin }^2}\theta }&{{{\sin }^2}\theta }\\{{{\cos }^2}\theta }&{1 + {{\cos }^2}\theta }&{{{\cos }^2}\theta }\\{4\sin 4\theta }&{4\sin 4\theta }&{1 + 4\sin 4\theta }\end{array}\,} \right| = 0$

Using ${C_1} \to {C_1} – {C_2},{C_2} \to {C_2} – {C_3}$

==> $\left| {\,\begin{array}{*{20}{c}}1&0&{{{\sin }^2}\theta }\\{ – 1}&1&{{{\cos }^2}\theta }\\0&{ – 1}&{1 + 4\sin 4\theta }\end{array}\,} \right| = 0$

==> $2\,(1 + 2\sin 4\theta ) = 0 \Rightarrow \sin 4\theta = \frac{{ – 1}}{2}$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.