Let $a , b$ and $\lambda$ be positive real numbers. Suppose $P$ is an end point of the latus rectum of the parabola $y^2=4 \lambda x$, and suppose the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ passes through the point $P$. If the tangents to the parabola and the ellipse at the point $P$ are perpendicular to each other, then the eccentricity of the ellipse is
$\frac{1}{\sqrt{2}}$
$\frac{1}{2}$
$\frac{1}{3}$
$\frac{2}{5}$
The foci of $16{x^2} + 25{y^2} = 400$ are
The length of the latus rectum of the ellipse $5{x^2} + 9{y^2} = 45$ is
Point $'O' $ is the centre of the ellipse with major axis $AB$ $ \&$ minor axis $CD$. Point $F$ is one focus of the ellipse. If $OF = 6 $ $ \&$ the diameter of the inscribed circle of triangle $OCF$ is $2, $ then the product $ (AB)\,(CD) $ is equal to
The line passing through the extremity $A$ of the major axis and extremity $B$ of the minor axis of the ellipse $x^2+9 y^2=9$ meets its auxiliary circle at the point $M$. Then the area of the triangle with vertices at $A, M$ and the origin $O$ is
The value of $\lambda $, for which the line $2x - \frac{8}{3}\lambda y = - 3$ is a normal to the conic ${x^2} + \frac{{{y^2}}}{4} = 1$ is