10-2. Parabola, Ellipse, Hyperbola
hard

If the tangents on the ellipse $4x^2 + y^2 = 8$ at the points $(1, 2)$ and $(a, b)$ are perpendicular to each other, then $a^2$ is equal to

A

$\frac{2}{{17}}$

B

$\frac{4}{{17}}$

C

$\frac{64}{{17}}$

D

$\frac{128}{{17}}$

(JEE MAIN-2019)

Solution

$4{a^2} + {b^2} = 8\,\,\,\,\,\,…….\left( 1 \right)$

${\left( {\frac{{dy}}{{dx}}} \right)_{\left( {1,2} \right)}} =  – \frac{{4x}}{y} =  – 2$

$ \Rightarrow  – \frac{{4a}}{b} = \frac{1}{2}$

$b =  – 8a$

$ \Rightarrow {b^2} = 64{a^2}$

$68{a^2} = 8,{a^2} = \frac{2}{{17}}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.