माना $a , b$ तथा $\lambda$ धनात्मक वास्तविक संख्यायें है। माना परवलय $y ^2=4 \lambda x$ के नाभिलम्ब का अंतिम बिन्दु $P$ है तथा माना दीर्घवृत्त $\frac{ x ^2}{ a ^2}+\frac{ y ^2}{ b ^2}=1$, बिन्दु $P$ से गुजरता है। यदि परवलय तथा दीर्घवृत्त के बिन्दु $P$ पर खींची गई स्पर्श रेखायें एक दूसरे के लम्बवत् हो, तो दीर्घवृत्त की उत्केन्द्रता होगी
$\frac{1}{\sqrt{2}}$
$\frac{1}{2}$
$\frac{1}{3}$
$\frac{2}{5}$
माना दीर्घवृत्त $\frac{x^2}{9}+\frac{y^2}{4}=1$ पर एक बिंदु $P$ है। माना $P$ से होकर जाने वाली तथा $y$-अक्ष के समांतर रेखा $x^2+y^2=9$ के बिंदु $Q$ पर मिलती है तथा $P$ और $Q$, $X$ अंक्ष के एक ही ओर है | तो $P$ के दिर्ध्वृत पर चलने पर $P Q$ पर एक बिंदु $R$ जिसके लिए $\mathrm{PR}: \mathrm{RQ}=4: 3$ हैं, के बिंदुपथ की उत्केन्द्रता है:
किसी दीर्घवृत्त का केन्द्र $C$ एवं $PN$ कोई कोटि है, $A$, $A'$ दीर्घवृत्त के सिरे हैं तो $\frac{{P{N^2}}}{{AN\;.\;A'N}}$ का मान होगा
दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ के नाभिलम्ब के सिरों के उत्केन्द्र कोण हैं
दीर्घवृत्त $9{x^2} + 5{y^2} = 45$ के नाभियों के बीच की दूरी है
माना $E$ एक दीर्घवत्त है जिसके अक्ष, निर्देशांक अक्षों के समांतर हैं। इसका केन्द्र $(3,-4)$ पर, एक नाभि $(4,-4)$ पर तथा एक शीर्ष $(5,-4)$ पर हैं। यदि $mx - y =4, m >0$ दीर्घवत्त $E$ की एक स्पर्श रेखा है, तो $5 m ^{2}$ का मान बराबर है ......... |