माना कि $S=\{1,2,3,4,5,6\}$ है, और $X, S$ से $S$ में उन सभी संबंधों (relations) $R$ का समुच्चय (set) है जो निम्नलिखित दोनों गुणधर्मों (properties) को संतुष्ट करते हैं:
$i.$ $R$ में ठीक (exactly) 6 अवयव (elements) हैं।
$ii.$ प्रत्येक $(a, b) \in R$ के लिए $|a-b| \geq 2$ है।
माना कि $Y=\{R \in X: R$ के परिसर (range) में ठीक (exactly) एक अवयव (element) है $\}$
और $Z=\{R \in X: R, S$ से $S$ में एक फलन (function) है $\}$ ।
माना कि $n(A)$, समुच्चय $A$ में अवयवों की संख्या (number of elements) को दर्शाता है।
($1$) यदि $n(X)={ }^m C_6$ है, तब $m$ का मान .......... है।
($2$)यदि $n(Y)+n(Z)$ का मान $k^2$ है, तब $|k|$ .......... है।
इस प्रश्न के उतर दीजिये $1$ ओर $2.$
$20,36$
$20,38$
$20,40$
$20,45$
नीचे आकृति में समुच्चय $P$ और $Q$ के बीच एक संबंध दर्शाया गया है। इस संबंध को रोस्टर रूप में लिखिए। इसके प्रांत तथा परिसर क्या हैं ?
आकृति, समुच्चय $P$ से $Q$ का एक संबंध दर्शाती है। इस संबंध को समुच्चय निर्माण रूप
मान लीजिए कि $A =\{1,2,3,4,5,6\} . R =\{(x, y): y=x+1\}$ द्वारा $A$ से $A$ में एक संबंध परिभाषित कीजिए
$R$ के प्रांत, सहप्रांत तथा परिसर लिखिए
मान लीजिए कि $A =\{1,2\}$ और $B =\{3,4\} . A$ से $B$ में संबंधों की संख्या ज्ञात कीजिए।
मान लीजिए कि $R , Q$ से $Q$ में $R =\{(a, b): a, b \in Q$ तथा $a-b \in Z \} .$ द्वारा परिभाषित, एक संबंध है। सिद्ध कीजिए कि
$(a, b) \in R$ का तात्पर्य है कि $(b, a) \in R$