मान लीजिए कि $A =\{1,2,3, \ldots, 14\} \cdot R =\{(x, y): 3 x-y=0,$ जहाँ $x, y \in A \}$ द्वारा, $A$ से $A$ का एक संबंध $R$ लिखिए। इसके प्रांत, सहप्रांत और परिसर लिखिए।
The relation $R$ from $A$ to $A$ is given as $R = \{ (x,y):3x - y = 0,{\rm{ }}$ where $x,y \in A\} $
ie., $R=\{(x, y): 3 x=y, $ where $ x, y \in A\}$
$\therefore R=\{(1,3),(2,6),(3,9),(4,12)\}$
The domain of $R$ is the set of all first elements of the ordered pairs in the relation.
$\therefore$ Domain of $R=\{1,2,3,4\}$
The whole set $A$ is he codomain of the relation $R$.
$\therefore$ Codomain of $R=A=\{1,2,3 \ldots .14\}$
The range of $R$ is the set of all second elements of the ordered pairs in the relation.
$\therefore$ Range of $R=\{3,6,9,12\}$
मान लीजिए कि $A =\{1,2,3,4\}, B =\{1,5,9,11,15,16\}$ और $f=\{(1,5),(2,9),(3,1),(4,5), (2,11)\}$. क्या निम्नलिखित कथन सत्य हैं ?
$f, A$ से $B$ में एक संबंध है।
प्रत्येक दशा में अपने उत्तर का औचित्य बतलाइए ।
नीचे आकृति में समुच्चय $P$ और $Q$ के बीच एक संबंध दर्शाया गया है। इस संबंध को समुच्चय निर्माण रूप में
मान लीजिए कि $R , Q$ से $Q$ में $R =\{(a, b): a, b \in Q$ तथा $a-b \in Z \} .$ द्वारा परिभाषित, एक संबंध है। सिद्ध कीजिए कि
$(a, a) \in R$ सभी $a \in Q$ के लिए
मान लीजिए कि $A =\{x, y, z\}$ और $B =\{1,2\}, A$ से $B$ के संबंधों की संख्या ज्ञात कीजिए।
संबंध $R =\left\{\left(x, x^{3}\right): x\right.$ संख्या $10$ से कम एक अभाज्य संख्या है $\}$ को रोस्टर रूप में लिखिए।