Let $a_1, a_2, a_3 \ldots$. be a $G.P.$ of increasing positive terms. If $a_1 a_5=28$ and $a_2+a_4=29$, then $a_6$ is equal to

  • [JEE MAIN 2025]
  • A
    $628$
  • B
    $526$
  • C
    $784$
  • D
    $812$

Similar Questions

Find the $20^{\text {th }}$ and $n^{\text {th }}$ terms of the $G.P.$ $\frac{5}{2}, \frac{5}{4}, \frac{5}{8}, \ldots$

If ${\log _x}a,\;{a^{x/2}}$ and ${\log _b}x$ are in $G.P.$, then $x = $

The geometric series $a + ar + ar^2 + ar^3 +..... \infty$ has sum $7$ and the terms involving odd powers of $r$ has sum $'3'$, then the value of $(a^2 -r^2)$ is -

Let the first term $a$ and the common ratio $r$ of a geometric progression be positive integers. If the sum of its squares of first three terms is $33033$, then the sum of these three terms is equal to

  • [JEE MAIN 2023]

The sum to infinity of the progression $9 - 3 + 1 - \frac{1}{3} + .....$ is