- Home
- Standard 11
- Mathematics
8. Sequences and Series
hard
Let $A _{1}, A _{2}, A _{3}, \ldots \ldots$ be an increasing geometric progression of positive real numbers. If $A _{1} A _{3} A _{5} A _{7}=\frac{1}{1296}$ and $A _{2}+ A _{4}=\frac{7}{36}$, then, the value of $A _{6}+ A _{8}+ A _{10}$ is equal to
A
$33$
B
$37$
C
$43$
D
$47$
(JEE MAIN-2022)
Solution
$A _{1} \cdot A _{3} \cdot A _{5} \cdot A _{7}=\frac{1}{1296}$
$\left( A _{4}\right)^{4}=\frac{1}{1296}$
$A _{4}=\frac{1}{6}…..(1)$
$A _{2}+ A _{4}=\frac{7}{36}$
$A _{2}=\frac{1}{36}…..(2)$
$A _{6}=1$
$A _{8}=6$
$A _{10}=36$
$A _{6}+ A _{8}+ A _{10}=43$
Standard 11
Mathematics